Exopolysaccharides from yeast: insight into optimal conditions for biosynthesis, chemical composition and functional properties - review.
نویسندگان
چکیده
BACKGROUND xopolysaccharides (EPS) are not a well-established group of metabolites. An industrial scale of this EPS production is limited mainly by low yield biosynthesis. Until now, enzymes and biosynthesis pathways, as well as the role of regulatory genes, have not been described. Some of yeast EPS show antitumor, immunostimulatory and antioxidant activity. Others, absorb heavy metals and can function as bioactive components of food. Also, the potential of yeast EPS as thickeners or stabilizers can be found. Optimal conditions for the biosynthesis of yeast exopolysaccharides require strong oxygenation and low temperature of the culture, due to the physiology of the producer strains. The medium should contain sucrose as a carbon source and ammonium sulfate as inorganic nitrogen source, wherein the C:N ratio in the substrate should be 15:1. The cultures are long and the largest accumulation of polymers is observed after 4 or 5 days of culturing. The structure of yeast EPS is complex which affects the strain and culture condition. The EPS from yeast are linear mannans, pullulan, glucooligosaccharides, galactooligosaccharides and other heteropolysaccharides containing α-1,2; α-1,3; α-1,6; β-1,3; β-1,4 bonds. Mannose and glucose have the largest participation of carbohydrates for. METHODS t exopolysaccharides (EPS) are not a well-established group of metabolites. An industrial scale of this EPS production is limited mainly by low yield biosynthesis. Until now, enzymes and biosynthesis pathways, as well as the role of regulatory genes, have not been described. Some of yeast EPS show antitumor, immunostimulatory and antioxidant activity. Others, absorb heavy metals and can function as bioactive components of food. Also, the potential of yeast EPS as thickeners or stabilizers can be found. Optimal conditions for the biosynthesis of yeast exopolysaccharides require strong oxygenation and low temperature of the culture, due to the physiology of the producer strains. The medium should contain sucrose as a carbon source and ammonium sulfate as inorganic nitrogen source, wherein the C:N ratio in the substrate should be 15:1. The cultures are long and the largest accumulation of polymers is observed after 4 or 5 days of culturing. The structure of yeast EPS is complex which affects the strain and culture condition. The EPS from yeast are linear mannans, pullulan, glucooligosaccharides, galactooligosaccharides and other heteropolysaccharides containing α-1,2; α-1,3; α-1,6; β-1,3; β-1,4 bonds. Mannose and glucose have the largest participation of carbohydrates formin. RESULTS t exopolysaccharides (EPS) are not a well-established group of metabolites. An industrial scale of this EPS production is limited mainly by low yield biosynthesis. Until now, enzymes and biosynthesis pathways, as well as the role of regulatory genes, have not been described. Some of yeast EPS show antitumor, immunostimulatory and antioxidant activity. Others, absorb heavy metals and can function as bioactive components of food. Also, the potential of yeast EPS as thickeners or stabilizers can be found. Optimal conditions for the biosynthesis of yeast exopolysaccharides require strong oxygenation and low temperature of the culture, due to the physiology of the producer strains. The medium should contain sucrose as a carbon source and ammonium sulfate as inorganic nitrogen source, wherein the C:N ratio in the substrate should be 15:1. The cultures are long and the largest accumulation of polymers is observed after 4 or 5 days of culturing. The structure of yeast EPS is complex which affects the strain and culture condition. The EPS from yeast are linear mannans, pullulan, glucooligosaccharides, galactooligosaccharides and other heteropolysaccharides containing α-1,2; α-1,3; α-1,6; β-1,3; β-1,4 bonds. Mannose and glucose have the largest participation of carbohydrates forming EPS.
منابع مشابه
Biogenic synthesis and antimicrobial activity of Silver nanoparticle using exopolysaccharides from Lactic Acid bacteria
Nanotechnology provides the ability to engineer the properties of materials by controlling their size, and this has driven research toward a multitude of potential uses for nanomaterials. This study aimed at biosynthesis and characterization of silver nanoparticles (SNPs) using exopolysaccharides (EPS) of lactic acid bacteria (LAB) and the antimicrobial potential of the biosynthesized SNPs agai...
متن کاملMicrobial Exopolysaccharides: A Review of Their Function and Application in Food Sciences
Extracellular polymeric substances are defined as high molecular weight compounds secreted by the microorganisms in the surrounding area. Since these extracellular substances are mainly polysaccharide, they are named exopolysaccharide. Microbial exopolysaccharides composed of sugar residue have growing interest as a new class of microbial products which can be used in food, pharmaceutical, and ...
متن کاملBiogenic synthesis and antimicrobial activity of Silver nanoparticle using exopolysaccharides from Lactic Acid bacteria
Nanotechnology provides the ability to engineer the properties of materials by controlling their size, and this has driven research toward a multitude of potential uses for nanomaterials. This study aimed at biosynthesis and characterization of silver nanoparticles (SNPs) using exopolysaccharides (EPS) of lactic acid bacteria (LAB) and the antimicrobial potential of the biosynthesized SNPs agai...
متن کاملEffect of salt stress on the production and properties of extracellular polysaccharides produced by Cryptococcus laurentii.
The composition, main structural features and molecular properties of exopolysaccharides (EP) produced by Cryptococcus laurentii var. laurentii CCY 17-3-16 under optimal (EPo) and NaCI-stress conditions (EPs) as well as their subfractions isolated by gel chromatography were studied using chemical, FT-IR and NMR spectroscopy methods. The results showed that under stress conditions the yeast prod...
متن کاملNew insight into the application of outer membrane vesicles of Gram-negative bacteria
This review presents a brief outline of our current knowledge of the structure and chemical composition of the outer membrane vesicles (OMVs), originating from the surface of Gram negative bacteria including their outer membrane proteins and lipopolysaccharides. Moreover, the functional roles and applications of OMVs in medical research such as OMV-based vaccines, OMV adjuvants properties, OMV ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta scientiarum polonorum. Technologia alimentaria
دوره 14 4 شماره
صفحات -
تاریخ انتشار 2015